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Radiative Transfer

Radiative transfer is the physical phenomenon of energy transfer
In the form of electromagnetic radiation.
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1s * The excited hydrogen atom may de-excite into an excited state
Type of Scattering resulting in reemission of a lower energy photon, which is called
with Atomic Hydrogen Raman Scattering. If the de-excitation is made into the ground

state, then result is an elastic scattering, which is also called
Rayleigh scattering.



R
Scattering with Atomic Hydrogen

,/
,/
/” AN
o’ Ly
e /
/, &” II
PR
]
/
II Excitation
[/ —===> Resonance Scattering
! Rayleigh Scattering

1s

lll’lll

/
I ———»

Raman Scattering

Type of Scattering
with Atomic Hydrogen

Chang et al. 2015

Lee et al. 2016

Chang et al. 2017

Chang et al. 2018A

Chang et al. 2018B

Choi et al. 2020

Chang et al. 2020

Chang et al. prep

Scattering Wing of
Ha and HB

Raman Scattered O VI

Polarization of Lya

Resonantly Scattered
Ha and Ly

Scattering Wing of
Ha and HB

Raman scattered He Il

Grid-Based Simulation

Scattered Lya
in CGM and IGM

Raman Scattering

Raman Scattering

Resonance Scattering

Raman Scattering
Thomson Scattering

Raman scattering

Raman scattering

Resonance Scattering

AGN

Symbiotic
Stars

AGN

ISM

Symbiotic
Stars

Planetary
Nebulae

STaRS

Lya Blobs



Radiative Transfer for Raman Scattering



Raman Scattering in Astrophysics — Schmid 1989
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Fig.1. Raman scattered emission bands in the symbiotic star V1016 .
C;'i The spe::ltrum was obtained on the 1.93m telescope at the Ob- Th e b In ary stars com posed Of

servatoire de Haute Provence.

hot white dwarf and cool red giant

 Raman scattered lines are relatively broader than other emission lines.
« Schmid (1989) identify Raman Scattered O VI at 6825 A and 7082 A in V1016 Cyg.
» The incident photons are O VI A1032 and A1038.



Raman Scattering in Astrophysics — Schmid 1989
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Cyg. The spectrum was obtained on the 1.93m telescope at the Ob- Fig.2. Schematic ene?y level diagram for Raman scattering of OVI
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Raman scattered lines are relatively broader than other emission lines.
Schmid (1989) identify Raman Scattered O VI at 6825 A and 7082 A in V1016 Cyg.
The incident photons are O VI A1032 and A1038.




Raman Scattering in Previous Works

 Chang et al. 2015, Formation of Raman wings near Ha, H[3, and Paa in AGN unification model
« Chang et al. 2018, Broad Balmer wing in Symbiotic Stars
« Chang & Lee 2020, 3D grid-based Monte Carlo code for Raman scattering



Formation of Raman wings in AGN Unification Model
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In AGN unification model, the type of AGN is determine by the line of sight of one unification model.

« The torus obscure the super massive black hole and broad line region.
« The hydrogen column density of the torus is ~ 1023 cm ™2 measured by the hardness of X-ray.

Chang et al. 2015, ApJ, 814, 98C



Formation of Raman wings in AGN Unification Model
Chang et al. 2015
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« The continuum near LypB and Lyy convert to Raman wings near Ha and Hf.
 The widths of Raman wings are proportional to NJ;.
- Raman wings show the asymmetry, when Ny, > 10%3cm™2.

Chang et al. 2015, ApJ, 814, 98C



Broad Balmer Wings in Symbiotic Stars
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Ha Wings in Symbiotic Stars (Chang et al. 2018)

(Skopal et al. 2006)
* Ha in symbiotic stars shows the broad wing over ~ 1000 km/s.
« Thomson scattering wings show the same width near Ha and Hf3.

« Raman scattering wing near Ha is 3 times broader than Hf3.
Chang et al. 2018, ApJ, 866, 129C



Normalized Flux [A_I]

Broad Balmer Wings in Symbiotic Stars

100 F ! ! ' ! Ho ! i 100 F T T T T ™ T ]
Wing of Hho ] ; 1B
Z And Ing ol Ho . Wing of Ho
. Wing of Hf =—— | - Z And . Wing of Hf =
Raman Wings < Thomson Wings
. 2l em™ 5 T,=10°K ;
E 10 F = . E
Z Trp = 0.37 : _
N '
=
£
[=]
Zz
1 comtnt e Tl T e S —— N L] 1
~3000 2000  —1000 0 1000 2000 3000 =3000 2000  —1000 0 1000 2000 3000
AV [km/s] AV [km/s]

Ha and Hf of S-type Symbiotic Stars, Z And
(Chang et al. 2018)

* We got the spectrum of symbiotic stars, Z And, by CFHT.

« We compare with the observation data and simulated wings.

because Ha wing is broader than Hf.

Chang et al. 2018, ApJ, 866, 129C
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STaRS — Poster — PSA-05
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Emission features formed through Raman scattering with atomic hydrogen provide unique and crucial information to probe the distribution and kinematics of a thick neutral
region illuminated by a strong far-ultraviolet radiation source. We introduce a new 3-dimensional Monte-Carlo code to describe the radiative transfer of line photons subject
to Raman and Rayleigh scattering with atomic hydrogen. In our Sejong Radiative Transfer through Raman and Rayleigh Scattering (STaRS) code, the position,
STaRS direction, wavelength, and polarization of each photon is traced until escape. The thick neutral scattering region is divided into multipie cells. Each cell is characterized by its

STaRS Gen 2: Sejong Radiative Transfer through [E]at[=]
Raman and Rayleigh Scattering in Dusty Medium o
Seok-Jun Chang’, Hee-Won Lee' and Kwang-Il Seon ? E

'Department of Physics and Astronomy, Sejong University, Seoul, Korea
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velacity and density, which ensures flexibility of the cade in analyzing Raman-scattered fealures formed in a neutral region with complicated kinematics and density
distribution. We are continuously developing STaRS to adopt the absorption and scattering effect by dust. This poster introduces STaRS and its current state and study.
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The link of Github for STaRS
https://github.com/csj607/STaRS

Raman He Il in Expanding Medium
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Lya Radiative Transfer for Lya Blobs
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Lya Blob

[CDFS-LABO1A

« High redshift z > 2
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Lya Radiative Transfer
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Lya Blob
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Lya Emission Mechanism

llllll]llll[lllllllIIIIIL

| lllllllllllLllI'lllll'

"‘llllllllllllllllll

Resonant scattering Superwind Cold accretion
Polarization map (Galactic wind in M82) (Goerdt+10) (Reuland+03)
(Hayes+11)

« Shock from Super Wind

« Cold Accretion by Massive Dark Matter Halo
« Photoionization by the source

« Star Formation

« Scattering with Atomic Hydrogen

Lya Radiative Transfer



Polarization of Lya Blob
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* Lya emission photons are unpolarized.
« Scattering with Atomic hydrogen — linear polarization

» Polarized Lya is observed in Lya blobs
(Prescott et al. 2011, Hayes et al. 2011, Beck et al. 2016, You et al. 2017, Kim et al. 2020)

Lya Radiative Transfer



Polarization by Scattering
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The degree of polarization of the photon after Rayleigh scattering
maintain (forward and backward scattering) or increase (90° scattering).



Lya Radiative Transfer

1990
Neufeld 1990, 1991 — Analytic Solution
Ahn & Lee 1998, 2002 — First Numerical Method for polarization of scattered Lya, No spatial distribution

2000
Zheng & Miralda-Escude 2002 — Spectrum & surface brightness

Verhamm et al. 2006 — Spectrum in dusty medium

Dijkstra & Loeb 2008 — Spatial distribution of Polarization, Only Rayleigh scattering

2010 - current

Gronke et al. 2016, 2017 — Spectrum in clumpy medium

Chang et al. 2017 — Polarized Lya in AGN unification model

Eide et al. 2018 — Polarization of Lya for LAE, Small physical scale
Seon & Kim 2020 — WF effect with hyper-find structure

Seon et al. in prep — Polarization adopting Stokes parameter, Narrow emission line width



Radiative Transfer for LAB

Essential Components for LAB

B3J2330 | == LABAOS | e Polarization behavior
| = t g OO : i
7 | by core and wing scattering
BRI /BB |+ Large scale halo ~ 100 kpc
NS _ Wiy, I
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CCCCCC

(mayes:etal.2011) You et al 2017 Kim et al 2020 _ _ _ _
« Kinematics of scattering medium

Can the Lya point source become LAB
through only scattering by an atomic
hydrogen in H | halo ?

Lya Radiative Transfer for Lya Blobs, Chang et al. prep



Scattered-Only Lya in Spherical H | halo
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Parameter Range

Note

Ry Nug 1018=21 oy —2
R. 0.1Ry — Ru, oo
Vexp 0— 400 kms™*
Osre 100 — 400 km s™*

H I column density
Effective radius
Expanding velocity

Lya source width

H | Region

z = 3(7.855 kpc/”)

* We develop the simulation to study scattered-only Lya.

« The simulation is based on LaRT (Seon & Kim 2020, Seon et al. prep).

Liyq = 10**erg/s

» We consider H | spherical halo with R; = 100 kpc surrounding Lya point source.

» The width of Lya emission from the source is 100 — 400 km/s.

Lya Radiative Transfer for Lya Blobs, Chang et al. prep



Lya Projected Image

Surface Brightness . DoP [%]
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* The projected images are for various Ny;, at o5, = 100 km s™! and vy, = 400km s~*.
* The surface brightness becomes more extended with increasing Ny;.

« The degree of polarization is not monotonic.

Lya Radiative Transfer for Lya Blobs, Chang et al. prep
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Dependence on Ny;

Surface brightness Degree of polarization Spectrum
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Lya Radiative Transfer for Lya Blobs, Chang et al. prep



Single and Multiple Scattering

A= Myq [A]

Scattering angle dominates
polarization behavior
with Polarization Jump

Lya radiation field determines
polarization behavior
without Polarization Jump
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« At Ny, = 108 9cm~2, the photon easily escape through several wing scattering.
« At Ny; = 108cm 2, the degree of polarization decrease due to resonance scattering.

« At Ny; = 10%tcm™2, the photon must go through multiple wing scattering.

Lya Radiative Transfer for Lya Blobs, Chang et al. prep



Dependence on v,,, in High Ny; (1021cm‘2) Halo
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Lya Radiative Transfer for Lya Blobs, Chang et al. prep
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Dependence on vexp in Low Ng; (101%c¢cm=%) Halo
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Spectral peak is slightly more closed to the line center.
Lya Radiative Transfer for Lya Blobs, Chang et al. prep
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Size of Lya Halo
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Polarization at R,
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« When the polarization is maximum, the effect of the single wing scattering is strongest.

10'® em™*, the polarization decrease with increasing vey.

10%1 cm™2, the polarization behavior does not depend on o,..
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Spectral Peak at AV eqk

SFG, 6. = 100 km s~ Gy =200kms” AGN, G, =400 km s~
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AV yeqr does not depend on veyp, in Ny < 10%° cm™2,
AV pear does Not depend on g

 The multiple wing scattering causes the variation of AV ¢4k aSs veyp iNCreases.
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Summary

* In this work, the simulation for Lya radiative transfer is based on LaRT.

« We test that scattered-only Lya becomes LAB in spherical H | halo.

 The surface brightness profiles become more extended with increasing Ny; and vey,,.

« The polarization pattern is always concentric because of spherical scattering region.

» The degree of polarization is hot monotonic due to resonance scattering in low Ny; regime.

« When Ny; = 10%°cm™2, Lya halo is extended over 100 kpc.
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