Radiative Transfer in Lyα Nebulae: Modeling Continuous or Clumpy Spherical Halo with Central Source

Seok-Jun Chang

Collaborator: Yujin Yang¹,Kwang-II Seon¹, Ann Zabludoff², Hee-Won Lee³

¹Korea Astronomy and Space Science Institute ²Steward Observatory, University of Arizona ³Sejong University

Contents

- **1. Introduction**
- **2.** Lyα Radiative Transfer
- 3. Results
- 4. Summary and Future Work

Lyα Nebulae

25" ~ 200kpc Subaru Image of SSA22-LAB1 (Matsuda et al. 2004)

Lyα Nebulae around QSO QSO Museum (Arrigoni Battaia et al. 2019)

Lyα Emission Mechanism

- Shock from Super Wind (Cabot et al. 2016, Travascio et al. 2020)
- Cold Accretion by Massive Dark Matter Halo (Trebitsch et al. 2016, Ao et al. 2020)
- Photoionization by the source (Steidel et al. 2010, Arrigoni Battaia et al. 2019)
- Scattering with Atomic Hydrogen (Hayes et al. 2011, Kim et al. 2020, Li et al. 2021)

Lyα Emission Mechanism

- Shock from Super Wind (Cabot et al. 2016, Travascio et al. 2020)
- Cold Accretion by Massive Dark Matter Halo (Trebitsch et al. 2016, Ao et al. 2020)
- Photoionization by the source (Steidel et al. 2010, Arrigoni Battaia et al. 2019)
- Scattering with Atomic Hydrogen (Hayes et al. 2011, Kim et al. 2020, Li et al. 2021)

Polarization of Lyα

- Lyα emission photons are unpolarized.
- Scattering with Atomic hydrogen \rightarrow linear polarization
- Polarized Lyα is observed in Lyα blobs (Prescott et al. 2011, Hayes et al. 2011, Beck et al. 2016, You et al. 2017, Kim et al. 2020)

Lyα Scattering with atomic Hydrogen

The degree of polarization of the photon after Rayleigh scattering maintain (forward and backward scattering) or increase (90^o scattering).

l

Lyα Radiative Transfer for Lyα Nebulae

Essential Components for RT

- Polarization behavior by core and wing scattering
- Large scale halo ~ 100 kpc
- Broad intrinsic Lyα emission

Can the Lyα point source become LAB through only scattering by an atomic hydrogen in H I halo ?

Clumpy Medium

Scattering Geometry

- The simulation is based on LaRT (Seon & Kim 2020, Seon et al. 2022).
- We consider Smooth and Clumpy H I spherical halo with $R_H = 100 \text{ kpc}$ surrounding Ly α point source.
- The range of (1) Ly α emission width from the source $\sigma_{src} = 100 400 \text{ km s}^{-1}$ (100 km s⁻¹ : SFG, 400 km s⁻¹ : AGN) (2) the total column density $N_{HI} = 10^{18-21} \text{ cm}^{-2}$
 - (3) Outflow velocity $v_{exp} = 0 400 \text{ km s}^{-1}$
 - (4) Covering factor $f_c = 1 100$

Photon Packets in Simulation

Lyα Projected Image of Model S

- At $N_{HI} \sim 10^{19} cm^{-2}$, the photon easily escape through several wing scattering.
- At $N_{HI} \sim 10^{21} cm^{-2}$, the photon must go through multiple wing scattering.
- The photon's journey in Single wing scattering case strongly depends on initial wavelength. Core Scattering → Weaker P
- The photons in Multiple wing scattering case are continuously optically thick.

Polarization Behavior of multiply scattered Lyα photons Seon et al. 2022

- At $N_{HI} \sim 10^{19} cm^{-2}$, the photon easily escape through several wing scattering.
- At $N_{HI} \sim 10^{21} cm^{-2}$, the photon must go through multiple wing scattering.
- The photon's journey in Single wing scattering case strongly depends on initial wavelength. Core Scattering → Weaker P
- The photons in Multiple wing scattering case are continuously optically thick.

Dependence on v_{exp} at Low N_{HI} $(10^{19} cm^{-2})$

The results depend on Lyα intrinsic width (SFG vs AGN)

 $v_{exp} \uparrow \rightarrow$ SB is more contracted Polarization \otimes ... in AGN case Spectra in the redward are similar

The results does on depend on Ly α intrinsic width (SFG vs AGN)

 $v_{exp} \uparrow \rightarrow \begin{array}{c} \text{SB is more contracted} \\ \text{Polarization} \uparrow \\ \text{Spectrum is more redshifted} \end{array}$

 10^{18}

10¹⁹

 $N_{\rm HI} \, [{\rm cm}^{-2}]$

10²¹

 10^{18}

10¹⁹

 $N_{\rm HI} \, [{\rm cm}^{-2}]$

10²⁰

 10^{21}

 10^{20}

1018

10¹⁹

 $N_{\rm HI} \, [{\rm cm}^{-2}]$

10²⁰

10²¹

Summary of Model S

- In this work, the simulation for Lyα radiative transfer is based on LaRT in Seon et al. 2022.
- The surface brightness profiles become more extended with increasing N_{HI} and v_{exp} .
- The polarization behavior is more complex and does not monotonically vary as a function of N_{HI}
- Core scattering must be considered for accurate polarization of scattered Lyα.
- When $N_{HI} \ge 10^{20} cm^{-2}$, Ly α halo is extended over 100 kpc.

Lyα Projected Image of Model C

- The projected images are for various f_c , at $\sigma_{src} = 100 \ km \ s^{-1}$, $v_{exp} = 400 \ km \ s^{-1}$, $N_{HI} = 10^{21} \ cm^{-2}$.
- The surface brightness becomes more contracted with decreasing f_c .
- But, at $f_c \ge 5$, the surface brightness profile is similar to the profile of Model S.
- The polarization of Model C is smaller than of Model S because of the surface scattering.
- The spectral profile shows more photons near the systematic velocity when f_c decreases.
- The simulated results with $f_c = 1$ and 2 are completely different from the results of Model S.

Surface Scattering at Clump

- The projected images are for various f_c , at $\sigma_{src} = 100 \ km \ s^{-1}$, $v_{exp} = 400 \ km \ s^{-1}$, $N_{HI} = 10^{21} \ cm^{-2}$.
- The surface brightness becomes more contracted with decreasing f_c .
- But, at $f_c \ge 5$, the surface brightness profile is similar to the profile of Model S.
- The polarization of Model C is smaller than of Model S because of the surface scattering.
- The spectral profile shows more photons near the systematic velocity when f_c decreases.
- The simulated results with $f_c = 1$ and 2 are completely different from the results of Model S.

Dependence on Clump's size

Size of Lyα Halo in Clumpy Medium

$$N_{HI} \ge 10^{20} cm^{-2}$$
 and $f_c \ge 2$,
 $R_{obs} > 50 \ {
m kpc}$

Summary of Model C

- The surface brightness profile of Model C with $f_c \ge 5$ is identical to the profile of Model S at the same NHI
- The surface scatterings decrease the overall polarization and the spectral line broadening.
- The size of clumps much smaller than the halo size does not affect the results of Lyα radiative transfer.
- The spectra of Model C with $f_c = 1 2$ are entirely different from those of Model S.
- When $N_{HI} \ge 10^{20} cm^{-2}$ and $f_c \ge 2$, Ly α halo is extended over 100 kpc.

Four Key Results

III

- Lyα halo with or without the bright core/polarization jump.
- II. Positive, Flat, and Negative gradient of polarization.
- III. Size of Ly α halo > 100 kpc when $f_c \ge 2$ and $N_{\rm HI} \ge 10^{20}$ cm⁻².
- IV. Ly α spectra of low f_c and high $N_{\rm HI}$ Model C showing the profiles impossible to be explained by Model S.

Future Work

Future Work – Metal Resonance Doublets Transfer

Scattering Cross Section of Resonance Doublets

Future Work – Investigating LABd05 using clumpy model

Rest-frame wavelength [Å]

Spectroscopic data Yang et al. 2014

- UV continuum

Rest-frame wavelength [Å]

Thanks