Escape of Lyβ from Hot and Optically Thick Media

Seok-Jun Chang Hee-Won Lee

Department of Physics and Astronomy, Sejong University

Contents

1.Introduction

Symbiotic Stars and Lyman Alpha Emitter (LAE)

2. Radiative Transfer of Resonance Scattering

3. Results

4. Summary and Discussion

Introduction - Symbiotic Stars

Symbiotic Stars

UV Spectrum of Symbiotic Stars

- Symbiotic stars are interacting binary system composed of a mass losing red giant and a white dwarf.
- The spectra of symbiotic stars show strong emission lines including highly ionized lines.
- The lines Raman scattered by atomic hydrogen are exhibited in the optical spectra.
 2017 KAS Spring Meeting

Introduction - Symbiotic Stars

Symbiotic Stars

Optical Spectrum of Symbiotic Stars

- Symbiotic stars are interacting binary system composed of a mass losing red giant and a white dwarf.
- The spectra of symbiotic stars show strong emission lines including highly ionized lines.
- The lines Raman scattered by atomic hydrogen are exhibited in the optical spectra.
 2017 KAS Spring Meeting

Introduction - Symbiotic Stars

Symbiotic Stars

Broad Hα Wing of Symbiotic Stars

- Symbiotic stars are interacting binary system composed of a mass losing red giant and a white dwarf.
- The spectra of symbiotic stars show strong emission lines including highly ionized lines.
- The lines Raman scattered by atomic hydrogen are exhibited in the optical spectra.
 2017 KAS Spring Meeting

Introduction - Lya Emitter (LAE)

Image of Lyman alpha emitter

Ly α escape fraction in Heyse et al. 2012

- Lyα is one of the strong emission lines from starforming region and quasars in the early universe.
- LAE show large equivalent widths of Lyα.
- The Lyα escape fraction is very important the measureable parameter to get a starforming rate of LAE.

Resonance Scattering

Energy Level of Atomic Hydrogen

- In the rest frame of the atomic hydrogen, the energy of photons have to be $E_{photon} = -13.6 eV(\frac{1}{m^2} \frac{1}{n^2}).$
- Resonance scattering dominates the radiative transfer of hydrogen lines in H II region.

Radiative Transfer of Hα in H II Region

Energy Level and Branching Ratio

Ηα H II Region

Population of n=1 and n=2 states

 Level population N₁ and N₂ are followed Boltzmann distribution.

$$\frac{N_2}{N_1} = \frac{g_2 e^{-\frac{E_1}{kT}}}{g_1 e^{-\frac{E_1}{kT}}} = \frac{1}{4} e^{-\frac{10.2eV}{kT}}$$

Level population N_1 and N_2 are proportional to optical depth τ_{α} and τ_{β} .

$$\frac{\tau_{\alpha}}{\tau_{\beta}} \propto \frac{N_2}{N_1}$$

Line Profiles of Resonance Scattered Photons

Line Profiles of Resonance Scattered Photons

Dependence of T at $\tau_{\alpha} = 10$ Lyβ Ηα $T = 1 \times 10^{4} \text{ K}$ $T = 5 \times 10^{4} \text{ K}$ $T = 1 \times 10^{5} \text{ K}$ $T = 3 \times 10^{5} \text{ K}$ 1.2 10 Number Flux per ΔV 1 8 0.8 6 0.6 4 0.4 2 0.2 0 0 -100100 200 -200-100100 200 -2000 0 $\Delta V [km/s]$ $\Delta V [km/s]$ width 1 $T\uparrow$ N_1 φ_{β} au_{eta} N_2 φ_{α} τ_{α}

Dependence of τ_{α} at $T = 10^5$

(T-tau) Map of Width

2017 KAS Spring Meeting

(T-tau) Map of Width

Ηα Lyβ 10⁶ 10⁶ 5 5 1.1 1.5 2.54 4 Temperature [K] Temperature [K] ³ ⁴¹/MHMH 2 ³ ^(II)/MHMH 1.1 10⁵ 10⁵ 1.5 2.52.51.1 1 1 1.5 10⁴ 10⁴ 0 0 10³ 10⁰ 10¹ 10² 10⁰ 10¹ 10³ 10² Optical Depth τ_{α} Optical Depth τ_{α}

(T-tau) Map of Width

2017 KAS Spring Meeting

HWHM/v_{th}

$(\tau_{\alpha} - T)$ Map of Flux Ratio LyB/ H α

Summary and Discussion

- Lyβ transition is non-neglected process
 by atomic hydrogen in the hot and optically thick region.
- 2. The widths of resonance scattered lines are increased as τ_{α} and *T* get higher.
- 3. The flux ratio Ly $\beta/H\alpha$ at $T = 10^5 K$ is ~ 0.5.
- 4. In symbiotic stars, the broad wings around H α can be originated from the Raman scattering of the escaped Ly β photons.
- 5. It is expected that scattered wings around H α in LAE can be detected at IR wavelength.